sections: writing_plugins:writing-plugins-packaging
This data as json
id | page | ref | title | content | breadcrumbs | references |
---|---|---|---|---|---|---|
writing_plugins:writing-plugins-packaging | writing_plugins | writing-plugins-packaging | Packaging a plugin | Plugins can be packaged using Python setuptools. You can see an example of a packaged plugin at https://github.com/simonw/datasette-plugin-demos The example consists of two files: a setup.py file that defines the plugin: from setuptools import setup VERSION = "0.1" setup( name="datasette-plugin-demos", description="Examples of plugins for Datasette", author="Simon Willison", url="https://github.com/simonw/datasette-plugin-demos", license="Apache License, Version 2.0", version=VERSION, py_modules=["datasette_plugin_demos"], entry_points={ "datasette": [ "plugin_demos = datasette_plugin_demos" ] }, install_requires=["datasette"], ) And a Python module file, datasette_plugin_demos.py , that implements the plugin: from datasette import hookimpl import random @hookimpl def prepare_jinja2_environment(env): env.filters["uppercase"] = lambda u: u.upper() @hookimpl def prepare_connection(conn): conn.create_function( "random_integer", 2, random.randint ) Having built a plugin in this way you can turn it into an installable package using the following command: python3 setup.py sdist This will create a .tar.gz file in the dist/ directory. You can then install your new plugin into a Datasette virtual environment or Docker container using pip : pip install datasette-plugin-demos-0.1.tar.gz To learn how to upload your plugin to PyPI for use by other people, read the PyPA guide to Packaging and distributing projects . | ["Writing plugins"] | [{"href": "https://github.com/simonw/datasette-plugin-demos", "label": "https://github.com/simonw/datasette-plugin-demos"}, {"href": "https://pypi.org/", "label": "PyPI"}, {"href": "https://packaging.python.org/tutorials/distributing-packages/", "label": "Packaging and distributing projects"}] |