sections
4 rows where breadcrumbs = "["JSON API"]", page = "json_api" and references = "[]"
This data as json, CSV (advanced)
Suggested facets: breadcrumbs (array)
| id ▼ | page | ref | title | content | breadcrumbs | references |
|---|---|---|---|---|---|---|
| json_api:expand-foreign-keys | json_api | expand-foreign-keys | Expanding foreign key references | Datasette can detect foreign key relationships and resolve those references into labels. The HTML interface does this by default for every detected foreign key column - you can turn that off using ?_labels=off . You can request foreign keys be expanded in JSON using the _labels=on or _label=COLUMN special query string parameters. Here's what an expanded row looks like: [ { "rowid": 1, "TreeID": 141565, "qLegalStatus": { "value": 1, "label": "Permitted Site" }, "qSpecies": { "value": 1, "label": "Myoporum laetum :: Myoporum" }, "qAddress": "501X Baker St", "SiteOrder": 1 } ] The column in the foreign key table that is used for the label can be specified in metadata.json - see Specifying the label column for a table . | ["JSON API"] | [] |
| json_api:id2 | json_api | id2 | Table arguments | The Datasette table view takes a number of special query string arguments. | ["JSON API"] | [] |
| json_api:json-api-discover-alternate | json_api | json-api-discover-alternate | Discovering the JSON for a page | Most of the HTML pages served by Datasette provide a mechanism for discovering their JSON equivalents using the HTML link mechanism. You can find this near the top of the source code of those pages, looking like this: <link rel="alternate" type="application/json+datasette" href="https://latest.datasette.io/fixtures/sortable.json"> The JSON URL is also made available in a Link HTTP header for the page: Link: https://latest.datasette.io/fixtures/sortable.json; rel="alternate"; type="application/json+datasette" | ["JSON API"] | [] |
| json_api:json-api-shapes | json_api | json-api-shapes | Different shapes | The default JSON representation of data from a SQLite table or custom query looks like this: { "database": "sf-trees", "table": "qSpecies", "columns": [ "id", "value" ], "rows": [ [ 1, "Myoporum laetum :: Myoporum" ], [ 2, "Metrosideros excelsa :: New Zealand Xmas Tree" ], [ 3, "Pinus radiata :: Monterey Pine" ] ], "truncated": false, "next": "100", "next_url": "http://127.0.0.1:8001/sf-trees-02c8ef1/qSpecies.json?_next=100", "query_ms": 1.9571781158447266 } The columns key lists the columns that are being returned, and the rows key then returns a list of lists, each one representing a row. The order of the values in each row corresponds to the columns. The _shape parameter can be used to access alternative formats for the rows key which may be more convenient for your application. There are three options: ?_shape=arrays - "rows" is the default option, shown above ?_shape=objects - "rows" is a list of JSON key/value objects ?_shape=array - an JSON array of objects ?_shape=array&_nl=on - a newline-separated list of JSON objects ?_shape=arrayfirst - a flat JSON array containing just the first value from each row ?_shape=object - a JSON object keyed using the primary keys of the rows _shape=objects looks like this: { "database": "sf-trees", ... "rows": [ { "id": 1, … | ["JSON API"] | [] |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [sections] ( [id] TEXT PRIMARY KEY, [page] TEXT, [ref] TEXT, [title] TEXT, [content] TEXT, [breadcrumbs] TEXT, [references] TEXT );