home / docs

sections

1 row where breadcrumbs = "["Plugin hooks"]", page = "plugin_hooks" and title = "extra_css_urls(template, database, table, columns, view_name, request, datasette)"

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: breadcrumbs (array)

id ▼ page ref title content breadcrumbs references
plugin_hooks:plugin-hook-extra-css-urls plugin_hooks plugin-hook-extra-css-urls extra_css_urls(template, database, table, columns, view_name, request, datasette) This takes the same arguments as extra_template_vars(...) Return a list of extra CSS URLs that should be included on the page. These can take advantage of the CSS class hooks described in Custom pages and templates . This can be a list of URLs: from datasette import hookimpl @hookimpl def extra_css_urls(): return [ "https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css" ] Or a list of dictionaries defining both a URL and an SRI hash : @hookimpl def extra_css_urls(): return [ { "url": "https://stackpath.bootstrapcdn.com/bootstrap/4.1.0/css/bootstrap.min.css", "sri": "sha384-9gVQ4dYFwwWSjIDZnLEWnxCjeSWFphJiwGPXr1jddIhOegiu1FwO5qRGvFXOdJZ4", } ] This function can also return an awaitable function, useful if it needs to run any async code: @hookimpl def extra_css_urls(datasette): async def inner(): db = datasette.get_database() results = await db.execute( "select url from css_files" ) return [r[0] for r in results] return inner Examples: datasette-cluster-map , datasette-vega ["Plugin hooks"] [{"href": "https://www.srihash.org/", "label": "SRI hash"}, {"href": "https://datasette.io/plugins/datasette-cluster-map", "label": "datasette-cluster-map"}, {"href": "https://datasette.io/plugins/datasette-vega", "label": "datasette-vega"}]

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [sections] (
   [id] TEXT PRIMARY KEY,
   [page] TEXT,
   [ref] TEXT,
   [title] TEXT,
   [content] TEXT,
   [breadcrumbs] TEXT,
   [references] TEXT
);
Powered by Datasette · Queries took 23.951ms