sections
2 rows where breadcrumbs = "["Plugins"]" and references = "[]"
This data as json, CSV (advanced)
Suggested facets: breadcrumbs (array)
| id ▼ | page | ref | title | content | breadcrumbs | references |
|---|---|---|---|---|---|---|
| plugins:plugins-configuration | plugins | plugins-configuration | Plugin configuration | Plugins can have their own configuration, embedded in a Metadata file. Configuration options for plugins live within a "plugins" key in that file, which can be included at the root, database or table level. Here is an example of some plugin configuration for a specific table: { "databases": { "sf-trees": { "tables": { "Street_Tree_List": { "plugins": { "datasette-cluster-map": { "latitude_column": "lat", "longitude_column": "lng" } } } } } } } This tells the datasette-cluster-map column which latitude and longitude columns should be used for a table called Street_Tree_List inside a database file called sf-trees.db . | ["Plugins"] | [] |
| plugins:plugins-installing | plugins | plugins-installing | Installing plugins | If a plugin has been packaged for distribution using setuptools you can use the plugin by installing it alongside Datasette in the same virtual environment or Docker container. You can install plugins using the datasette install command: datasette install datasette-vega You can uninstall plugins with datasette uninstall : datasette uninstall datasette-vega You can upgrade plugins with datasette install --upgrade or datasette install -U : datasette install -U datasette-vega This command can also be used to upgrade Datasette itself to the latest released version: datasette install -U datasette These commands are thin wrappers around pip install and pip uninstall , which ensure they run pip in the same virtual environment as Datasette itself. | ["Plugins"] | [] |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [sections] ( [id] TEXT PRIMARY KEY, [page] TEXT, [ref] TEXT, [title] TEXT, [content] TEXT, [breadcrumbs] TEXT, [references] TEXT );