sections
10 rows where page = "spatialite"
This data as json, CSV (advanced)
Suggested facets: breadcrumbs, references, breadcrumbs (array)
id ▼ | page | ref | title | content | breadcrumbs | references |
---|---|---|---|---|---|---|
spatialite:id1 | spatialite | id1 | SpatiaLite | The SpatiaLite module for SQLite adds features for handling geographic and spatial data. For an example of what you can do with it, see the tutorial Building a location to time zone API with SpatiaLite . To use it with Datasette, you need to install the mod_spatialite dynamic library. This can then be loaded into Datasette using the --load-extension command-line option. Datasette can look for SpatiaLite in common installation locations if you run it like this: datasette --load-extension=spatialite --setting default_allow_sql off If SpatiaLite is in another location, use the full path to the extension instead: datasette --setting default_allow_sql off \ --load-extension=/usr/local/lib/mod_spatialite.dylib | [] | [{"href": "https://www.gaia-gis.it/fossil/libspatialite/index", "label": "SpatiaLite module"}, {"href": "https://datasette.io/tutorials/spatialite", "label": "Building a location to time zone API with SpatiaLite"}] |
spatialite:importing-geojson-polygons-using-shapely | spatialite | importing-geojson-polygons-using-shapely | Importing GeoJSON polygons using Shapely | Another common form of polygon data is the GeoJSON format. This can be imported into SpatiaLite directly, or by using the Shapely Python library. Who's On First is an excellent source of openly licensed GeoJSON polygons. Let's import the geographical polygon for Wales. First, we can use the Who's On First Spelunker tool to find the record for Wales: spelunker.whosonfirst.org/id/404227475 That page includes a link to the GeoJSON record, which can be accessed here: data.whosonfirst.org/404/227/475/404227475.geojson Here's Python code to create a SQLite database, enable SpatiaLite, create a places table and then add a record for Wales: import sqlite3 conn = sqlite3.connect("places.db") # Enable SpatialLite extension conn.enable_load_extension(True) conn.load_extension("/usr/local/lib/mod_spatialite.dylib") # Create the masic countries table conn.execute("select InitSpatialMetadata(1)") conn.execute( "create table places (id integer primary key, name text);" ) # Add a MULTIPOLYGON Geometry column conn.execute( "SELECT AddGeometryColumn('places', 'geom', 4326, 'MULTIPOLYGON', 2);" ) # Add a spatial index against the new column conn.execute("SELECT CreateSpatialIndex('places', 'geom');") # Now populate the table from shapely.geometry.multipolygon import MultiPolygon from shapely.geometry import shape import requests geojson = requests.get( "https://data.whosonfirst.org/404/227/475/404227475.geojson" ).json() # Convert to "Well Known Text" format wkt = shape(geojson["geometry"]).wkt # Insert and commit the record conn.execute( "INSERT INTO places (id, name, geom) VALUES(null, ?, GeomFromText(?, 4326))", ("Wales", wkt), ) conn.commit() | ["SpatiaLite"] | [{"href": "https://pypi.org/project/Shapely/", "label": "Shapely"}, {"href": "https://whosonfirst.org/", "label": "Who's On First"}, {"href": "https://spelunker.whosonfirst.org/id/404227475/", "label": "spelunker.whosonfirst.org/id/404227475"}, {"href": "https://data.whosonfirst.org/404/227/475/404227475.geojson", "label": "data.whosonfirst.org/404/227/475/404227475.geojson"}] |
spatialite:importing-shapefiles-into-spatialite | spatialite | importing-shapefiles-into-spatialite | Importing shapefiles into SpatiaLite | The shapefile format is a common format for distributing geospatial data. You can use the spatialite command-line tool to create a new database table from a shapefile. Try it now with the North America shapefile available from the University of North Carolina Global River Database project. Download the file and unzip it (this will create files called narivs.dbf , narivs.prj , narivs.shp and narivs.shx in the current directory), then run the following: $ spatialite rivers-database.db SpatiaLite version ..: 4.3.0a Supported Extensions: ... spatialite> .loadshp narivs rivers CP1252 23032 ======== Loading shapefile at 'narivs' into SQLite table 'rivers' ... Inserted 467973 rows into 'rivers' from SHAPEFILE This will load the data from the narivs shapefile into a new database table called rivers . Exit out of spatialite (using Ctrl+D ) and run Datasette against your new database like this: datasette rivers-database.db \ --load-extension=/usr/local/lib/mod_spatialite.dylib If you browse to http://localhost:8001/rivers-database/rivers you will see the new table... but the Geometry column will contain unreadable binary data (SpatiaLite uses a custom format based on WKB ). The easiest way to turn this into semi-readable data is to use the SpatiaLite AsGeoJSON function. Try the following using the SQL query interface at http://localhost:8001/rivers-database : select *, AsGeoJSON(Geometry) from rivers limit 10; This will give you back an additional column of GeoJSON. You can copy and paste GeoJSON from this column into the debugging tool at geojson.io to visualize it on a map. To see a more interesting example, try ordering the records with the longest geometry first. Since there are 467,000 rows in the table you will first need to increase the SQL time limit imposed by Datasette: datasette rivers-database.db \ --load-extension=/us… | ["SpatiaLite"] | [{"href": "https://en.wikipedia.org/wiki/Shapefile", "label": "shapefile format"}, {"href": "http://gaia.geosci.unc.edu/rivers/", "label": "Global River Database"}, {"href": "https://www.gaia-gis.it/gaia-sins/BLOB-Geometry.html", "label": "a custom format based on WKB"}, {"href": "https://geojson.io/", "label": "geojson.io"}] |
spatialite:installing-spatialite-on-linux | spatialite | installing-spatialite-on-linux | Installing SpatiaLite on Linux | SpatiaLite is packaged for most Linux distributions. apt install spatialite-bin libsqlite3-mod-spatialite Depending on your distribution, you should be able to run Datasette something like this: datasette --load-extension=/usr/lib/x86_64-linux-gnu/mod_spatialite.so If you are unsure of the location of the module, try running locate mod_spatialite and see what comes back. | ["SpatiaLite", "Installation"] | [] |
spatialite:installing-spatialite-on-os-x | spatialite | installing-spatialite-on-os-x | Installing SpatiaLite on OS X | The easiest way to install SpatiaLite on OS X is to use Homebrew . brew update brew install spatialite-tools This will install the spatialite command-line tool and the mod_spatialite dynamic library. You can now run Datasette like so: datasette --load-extension=spatialite | ["SpatiaLite", "Installation"] | [{"href": "https://brew.sh/", "label": "Homebrew"}] |
spatialite:making-use-of-a-spatial-index | spatialite | making-use-of-a-spatial-index | Making use of a spatial index | SpatiaLite spatial indexes are R*Trees. They allow you to run efficient bounding box queries using a sub-select, with a similar pattern to that used for Searches using custom SQL . In the above example, the resulting index will be called idx_museums_point_geom . This takes the form of a SQLite virtual table. You can inspect its contents using the following query: select * from idx_museums_point_geom limit 10; Here's a live example: timezones-api.datasette.io/timezones/idx_timezones_Geometry pkid xmin xmax ymin ymax 1 -8.601725578308105 -2.4930307865142822 4.162120819091797 10.74019718170166 2 … | ["SpatiaLite"] | [{"href": "https://timezones-api.datasette.io/timezones/idx_timezones_Geometry", "label": "timezones-api.datasette.io/timezones/idx_timezones_Geometry"}] |
spatialite:querying-polygons-using-within | spatialite | querying-polygons-using-within | Querying polygons using within() | The within() SQL function can be used to check if a point is within a geometry: select name from places where within(GeomFromText('POINT(-3.1724366 51.4704448)'), places.geom); The GeomFromText() function takes a string of well-known text. Note that the order used here is longitude then latitude . To run that same within() query in a way that benefits from the spatial index, use the following: select name from places where within(GeomFromText('POINT(-3.1724366 51.4704448)'), places.geom) and rowid in ( SELECT pkid FROM idx_places_geom where xmin < -3.1724366 and xmax > -3.1724366 and ymin < 51.4704448 and ymax > 51.4704448 ); | ["SpatiaLite"] | [] |
spatialite:spatial-indexing-latitude-longitude-columns | spatialite | spatial-indexing-latitude-longitude-columns | Spatial indexing latitude/longitude columns | Here's a recipe for taking a table with existing latitude and longitude columns, adding a SpatiaLite POINT geometry column to that table, populating the new column and then populating a spatial index: import sqlite3 conn = sqlite3.connect("museums.db") # Lead the spatialite extension: conn.enable_load_extension(True) conn.load_extension("/usr/local/lib/mod_spatialite.dylib") # Initialize spatial metadata for this database: conn.execute("select InitSpatialMetadata(1)") # Add a geometry column called point_geom to our museums table: conn.execute( "SELECT AddGeometryColumn('museums', 'point_geom', 4326, 'POINT', 2);" ) # Now update that geometry column with the lat/lon points conn.execute( """ UPDATE museums SET point_geom = GeomFromText('POINT('||"longitude"||' '||"latitude"||')',4326); """ ) # Now add a spatial index to that column conn.execute( 'select CreateSpatialIndex("museums", "point_geom");' ) # If you don't commit your changes will not be persisted: conn.commit() conn.close() | ["SpatiaLite"] | [] |
spatialite:spatialite-installation | spatialite | spatialite-installation | Installation | ["SpatiaLite"] | [] | |
spatialite:spatialite-warning | spatialite | spatialite-warning | Warning | The SpatiaLite extension adds a large number of additional SQL functions , some of which are not be safe for untrusted users to execute: they may cause the Datasette server to crash. You should not expose a SpatiaLite-enabled Datasette instance to the public internet without taking extra measures to secure it against potentially harmful SQL queries. The following steps are recommended: Disable arbitrary SQL queries by untrusted users. See Controlling the ability to execute arbitrary SQL for ways to do this. The easiest is to start Datasette with the datasette --setting default_allow_sql off option. Define Canned queries with the SQL queries that use SpatiaLite functions that you want people to be able to execute. The Datasette SpatiaLite tutorial includes detailed instructions for running SpatiaLite safely using these techniques | ["SpatiaLite"] | [{"href": "https://www.gaia-gis.it/gaia-sins/spatialite-sql-5.0.1.html", "label": "a large number of additional SQL functions"}, {"href": "https://datasette.io/tutorials/spatialite", "label": "Datasette SpatiaLite tutorial"}] |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [sections] ( [id] TEXT PRIMARY KEY, [page] TEXT, [ref] TEXT, [title] TEXT, [content] TEXT, [breadcrumbs] TEXT, [references] TEXT );